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Abstract
We study the intersection points of a fixed planar curve � with the nodal set
of a translationally invariant and isotropic Gaussian random field �(r) and
the zeros of its normal derivative across the curve. The intersection points
form a discrete random process which is the object of this study. The field
probability distribution function is completely specified by the correlation
G(|r − r′|) = 〈�(r)�(r′)〉. Given an arbitrary G(|r − r′|), we compute the
two-point correlation function of the point process on the line, and derive other
statistical measures (repulsion, rigidity) which characterize the short- and long-
range correlations of the intersection points. We use these statistical measures
to quantitatively characterize the complex patterns displayed by various kinds
of nodal networks. We apply these statistics in particular to nodal patterns of
random waves and of eigenfunctions of chaotic billiards. Of special interest
is the observation that for monochromatic random waves, the number variance
of the intersections with long straight segments grows like L ln L, as opposed
to the linear growth predicted by the percolation model, which was successfully
used to predict other long-range nodal properties of that field.

PACS numbers: 05.45.Mt, 05.40.−a, 03.65.Sq

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Entangled planar networks of convoluted lines appear quite often in various studies in physics
and mathematics. To cite a few examples, recall the snapshots of polymer solutions, the
level sets of rugged terrain, the trajectories of Brownian particles [1], the domain boundaries
in magnetic materials or in simulations of random percolation [2] etc. To characterize such
networks in a concise and quantitative way, one usually recourses to statistical measures,
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chosen to describe the specific properties of the network which are relevant to the problem
at hand. Some studies give bounds on the length or the curvature of the nodal lines of
wavefunctions in bounded domains, in other instances, the distribution of fractal dimensions
of Brownian trajectories which provide an impression of their ruggedness [3]. Other examples
are the distribution of the areas of connected domains in critical percolation, which show a
universal power law, or the (properly normalized) number of bulk nodal domains in billiard
wavefunctions which follow universal patterns that distinguish between chaotic and integrable
billiards [4, 5]. None of these measures provide a complete description of the complexity of
the network under study, and there is always room for introducing new measures which shed
light on features which were not brought to the front by previous studies.

In the present work we are interested in the point process generated by the intersections of a
complex network of lines with a given reference curve. To the best of our knowledge, previous
studies of the statistics of such point processes were not as detailed as the corresponding
analysis for other systems (such as energy spectra, eigenvalues of random matrices, or one-
dimensional gas). In particular, while the density and correlation function were calculated,
other physically meaningful observables which can be extracted from them, such as the number
variance, rigidity and the correlation form factor (power spectrum) were not investigated.

Longuet-Higgins, in his analysis of the moving surface of the sea [6], derived the density
and correlation functions of the zeros on a straight line. Berry and Dennis [7] studied
the distribution of phase singularities in a random complex field. For a planar field, these
singularities are actually the intersections of the nodal lines of the real part of the field with
those of the imaginary part. In these cases (and others as well, including the present paper),
restricting the field to a straight line allows using the formula derived by Rice [8] for calculating
the exact correlation of the zeros from the known two-point correlation of the amplitudes. Blum
et al [4] considered billiard wavefunctions, and studied the number of intersections of their
nodal lines with the billiard boundary. It was shown that the distributions of the (properly
normalized) number of intersections distinguish between chaotic and integrable billiards.
Johansson [1] considered the trajectories of N Brownian particles on a line, which start equally
separated at t = 0 and return to their original position at t = 2T without intersecting each
other’s path. The distribution of spacings at t = T , measured in units of the average spacing,
was shown to be identical to the distribution of eigenvalues in the Gaussian unitary ensembles
of N × N matrices (GUE). Baik and Rains [9] showed that for a certain class of discrete,
non-intersecting random walkers, when not restricted to return to the original position, the
limiting distribution of spacings matches that of the eigenvalues of the Gaussian orthogonal
ensemble (GOE). Such problems, when considered in (x, t) space, represent intersections of
random planar paths with a reference line orthogonal to the t axis.

In the present paper we shall study the points generated by the intersection of a reference
curve with the nodal lines of three fields.

(i) Random monochromatic waves [10] in R
2 which are solutions of the wave equation

−��(x, y) = k2�(x, y). (1)

Since no boundary conditions are required, the solutions are plane waves which propagate
in arbitrary directions with wave vectors |k| = k. The random wave ensemble can be
constructed as a linear superpositions of plane waves√

2

N

N∑
n=1

cos(knr + φn), (2)
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(with r ∈ R
2, |kn| = k and N � 1), where kn/|k| and φn are distributed uniformly and

independently on the unit circle. Equivalently, one can also use random superpositions of
solutions of the wave equation (1) in polar coordinates

a0J0(kr) + 2
∑
l>0

alJl(kr) cos(lθ + φl), (3)

with real coefficients al , which are identically and independently distributed Gaussian
variables, and where the phases φl are independent and uniformly distributed on [0, 2π ].
The correlation function for this Gaussian ensemble is

GRW(r, r′) = J0(k|r − r′|). (4)

(ii) Given a reference curve, we consider the normal derivative n ·�ψ(r) of the random wave
field (2), where n is the direction normal to the reference curve at r. For example, when
the curve is the x axis, the two-point correlation of this function is

GNRW(x, x ′) = 2J1(k|x − x ′|)/(k|x − x ′|) (5)

The zeros of the normal derivative are not, strictly speaking, nodal intersections, but they
do define a point process, which can be studied the same way. Furthermore, when the
reference curve is straight, these zeros are the nodal intersections of an actual random
field.

The boundary modified random waves [11] were introduced in order to study the
effect of a Dirichlet boundary on the statistics of the nodal set. They are defined in the
upper-half plane and are solutions of (1) subject to the boundary condition

�(x, y = 0) = 0 (6)

As explained in section 4, the nodal intersections of that field with its boundary, the x
axis, are identical with the zeros of the normal derivative of a Gaussian random wave field
on this line. This fact makes the normally derived random wave field on a curved line
a natural candidate for comparison with generalized boundary modified models, such as
Wheeler’s generalization for a circular boundary [12], or the semi-classical treatment of
a general boundary by Urbina and Richter [13].

(iii) Random Gaussian fields with the short-range correlation function

GSRF(r, r′) = exp(−k2|r − r′|2/4) (7)

were introduced in [14] to investigate the importance of the fact that the random waves
correlation function decays very slowly. The correlation function above coincides with
GRW at short ranges, but decays quickly at large values.

According to the Uhlenbeck theorem [15], the crossing probability of nodal lines of
random waves vanishes. In [16], the ‘avoidance’ of nodal lines was defined, as a measure
of the distance between nodal lines which avoid intersection in the vicinity of saddle points.
The probability distribution P(d) of the avoidances d was computed and it displayed linear
repulsion at small values of d, P (d) ∝ d. However, the coefficient of proportionality was not
the same as one would get from the application of Johansson’s result to the case of Brownian
trajectories.

Having in mind the results of Johansson’s paper on the one hand, and knowing that nodal
lines avoidances repel linearly on the other hand, one might expect that the statistics of nodal
intersections would also follow (at least to some extent) the predictions of random matrix
theory. We shall show below that this is not the case.

This paper is constructed as follows. In section 2, we discuss the derivation of the
nodal intersection statistics from the known distribution of the amplitudes. First, we extract



9746 A Aronovitch and U Smilansky

the necessary one-dimensional correlation functions which follow from restricting the field
to a general reference curve (similar to the restriction of the amplitude to a straight line,
which was done in [6]). Then, the statistics of the zeros is extracted from these one-
dimensional amplitude correlations. An exact formula for computing zeros correlations from
one-dimensional amplitude correlations was derived by Rice in his analysis of random noise
[8, 17]. The derivation described here uses a different method, and is similar to the derivation
used by other authors [7, 18]. However, as opposed to these studies, we consider the case of a
general curve, and derive the formulae for the line and the circle as special cases. Restriction
to a general curve does not preserve the field’s translational invariance. This makes the results
more complicated, but the methods remain the same. Such a generalization is necessary in
cases where the test curve is inherent in the problem we wish to model (such as the boundary
of a quantum billiard), and not independent of the field. In appendix B we describe the
generalized calculation for the normally derived random waves.

In section 3, we apply the above to the monochromatic random wave (2), using a circle
and a straight line for reference curves. A universal correlation function is extracted for the
semiclassical (k � 1) limit, and found to decay slower than the RMT correlations. The
number variance and the form factor (29) are calculated and their special features, which are
clearly different from the RMT predictions, are shown as well. Over large ranges, the number
variance is shown to grow as L ln L. This is in contrast with the linear growth we might expect
from Bogomolny’s percolation model [5], whose predictions for other asymptotic properties
of the field (nodal count [4] and SLE driving force [19]) give a satisfactory match to numerical
data. In section 4, we discuss the zeros distribution of the normal derivative of a Gaussian field
on the reference curve. In the framework described above this may be considered a different
form of restricting the field to the curve. The semiclassical limit, number variance and form
factor are calculated for this case too.

Finally, in section 5 we compare the above results to those of other fields. The statistics
mentioned above are calculated for the short-range Gaussian model (7) (which displays a
different behaviour), and also evaluated numerically for chaotic billiards, which show a
reasonable match to the monochromatic random wave model. The theoretical properties
of the distributions considered are summarized in table 1 (page 23), and compared to the
well-known results for the Poisson process and RMT ensembles.

2. Statistics of zeros from amplitude correlations

2.1. Nearest neighbour distribution

When considering the statistics of a sequence of points, the nearest neighbour spacing
distribution (where the spacing is measured in units of the mean spacing) is perhaps the
most natural, and easy to evaluate experimentally. In figure 1, we show the nearest neighbour
distributions for two-point processes. The first is the intersections of the nodal lines of the
random wave (RW) field (2) with the reference curve. The second process (NRW) is the zeros
of the normal derivative of the random waves on the curve. The distributions were generated
by numerical simulations, and compared with the corresponding statistics of the random
(Poisson) ensemble and the Wigner surmise (corresponding to the GOE ensemble) [20]. At
short ranges, both ensembles display linear level repulsion similar to the GOE distribution,
but with different slopes. The most conspicuous differences appear at large spacings, and to
get a clearer impression, we show in figure 2, the same data in semi-log plot. We observe two
important differences.
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Figure 1. Density of the nearest neighbour level spacing.

Figure 2. Nearest neighbour level spacing (log density). Inset shows persistent oscillations relative
to the mean decaying curve.

(i) On average, both distributions decay exponentially with approximately the same rate
p(s) ∼ exp(−1.4s). This decay is faster than the exp(−s) Poisson decay, but slower than
the ‘semi-Poisson’ [21] distribution, which decays like exp(−2s).

(ii) The overall exponential decays are decorated by persistent oscillations, which are clearly
seen in the inset of figure 2. The oscillations have slowly decaying amplitudes and their
frequencies are ∼1.4π for RW and ∼2π for NRW.

The results above demonstrate that the nodal intersection statistics are significantly
different than those of other, well-known, point processes. The purpose of this work is to
investigate the reasons for the occurrence of these differences. However, the nearest neighbour
statistic is not easily amenable to analytic derivation. Rather, we use the two-point correlation
function, which is readily accessible, as will be shown in this paper. For the asymptotic s � 1
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limit, this statistic coincides with the nearest neighbour density. Furthermore, other statistics
with well-defined physical meaning, such as the form factor and number variance, can be
expressed in terms of the correlation. We will now give some definitions, and follow with an
overview of a derivation for the two-point correlation of nodal intersections with a general
reference curve.

2.2. Two-point correlations

A random field ψ(r) is Gaussian if for any vector u whose elements u1, u2, . . . , un are
field amplitudes ui = ψ(ri ) or partial derivatives of the field at some points r1, . . . , rn, the
probability distribution of u is multivariate normal. The probability density of a multivariate
normal random vector u, with a mean value u0 is given by

p(u) = 1

(2π)n/2
√

det C
exp

[
−1

2
(u − u0)

T C−1(u − u0)

]
, (8)

where C is the covariance matrix Ci,j = Cov(ui, uj ). For the random wave ensemble (2),
Gaussianity follows from the n-dimensional central limit theorem.

Assuming smoothness of the field, means and covariances of the field’s derivatives can
be calculated by deriving the appropriate amplitude statistics. Combining that with the
fact that all the elements of u0 and C are single-point means and two-point covariances, it
follows that all statistical properties of a Gaussian field ψ(r) are completely determined by its
mean value 〈ψ(r)〉 (which will be zero for the relevant cases investigated) and the two-point
covariance function G(r, r′) ≡ Cov(ψ(r), ψ(r′)). As a consequence, we should be able
to extract the distribution of the zeros from this function, and, in particular, the correlation
function of the nodal intersections can be derived from the correlation function of the one-
dimensional restriction f (t) ≡ ψ(r(t)) of the investigated field to the given reference curve
� : [0, L] → R

2 ≡ r(t) (t is the natural curve parameter).
The density and correlations of nodal intersections (NI) can be calculated directly once

f (t) and its properties are known, in particular we shall use the two-point correlations of the
restricted field f and its derivative along the curve ḟ (t) ≡ df/dt :

C0(t, t
′) ≡ Cov(f (t), f (t ′)) C1(t, t

′) ≡ Cov(f (t), ḟ (t ′)),

C̃1(t, t
′) ≡ Cov(ḟ (t), f (t ′)) C2(t, t

′) ≡ Cov(ḟ (t), ḟ (t ′)).
(9)

We will also use a lowercase c to denote the single-point limit of these, i.e. c0(t) ≡ C0(t, t) =
Var(f (t)) etc.

2.3. Restricting the field to a curve

Before we write down expressions for C0, C1 and C2, let us take note of special properties
of these functions, which follow from the symmetry of our field. The fields considered
are translationally invariant. This implies that the mean and the variance of the field are
constant over the domain. It allows us to apply a constant linear transformation ψ = Aψ̃ + B,
normalizing the field so that 〈ψ(r)〉 = 0 and c0 = 〈ψ2(r)〉 = 1 for all r (this is true for
equations (2) and (3); however, we will keep c0 in our expressions below, to make explicit the
effect of the multiplicative scaling).

Furthermore, assuming smoothness of ψ , it follows that

2〈ψ(r)�ψ(r)〉 = �〈ψ2 (r)〉 = 0. (10)

In general, the restricted fields are not translationally invariant. Therefore the computation
of their correlations requires special attention, and will involve the geometric properties of the
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reference curve, such as its curvature. However, in the limit t → t ′, one can still project (10)
onto the curve, and conclude that C̃1(t, t

′) → −C1(t, t
′), and in particular c1 = 0.

The fields we consider here are also isotropic1, so the correlation function has the form
〈ψ(r)ψ(r′)〉 = G(|r − r′|). To make use of this property, we change the coordinates

u = r + r′, d = r − r′,

so that derivatives with respect to u vanish. Derivatives with respect to d can be expressed in
terms of the single-parameter function G(d) (where d = |d|).

This results in the following expressions for the correlation functions (9):

C0 = G(d)

C1 = −ṙ′ · d̂G′(d), C̃1 = ṙ · d̂G′(d)

C2 = −
∑
i,j

ṙi

[(
G′′ − G′

d

)
didj

d2
+

G′

d
δi,j

]
ṙ ′
j ,

(11)

where r′ ≡ r(t ′), and d̂ ≡ d/d.

2.4. The nodal intersections statistics

The density of zeros of f takes the form

ρ(t) =
∑

i

δ(t − ti) = δ(f (t))|ḟ (t)|, where f (ti) = 0. (12)

Following Kac [22], we use the Fourier representation

〈ρ(t)〉 = 1

2π2

∫ ∫ ∞

−∞

dξ dη

η2
〈eiξf (t)(1 − eiηḟ (t))〉.

This integral can be solved using elementary properties of multinormal variables (8). For any
multinormal variable x with zero mean, and real vector k, the following identity holds:

〈eik·x〉 = exp

−1

2

∑
i,j

kiCi,j kj

 , where Ci,j = Cov(xi, xj ) (13)

Using the Gaussianity of the field f , this identity can be applied to the mean density. The
resulting integral separates into simple Gaussian integrals, and we get the following result for
the density:

〈ρ〉 = 1

π

√
c2

c0
. (14)

We now move on to two-point statistics. When dealing with ‘point processes’ (such as
the zeros of f ), whose amplitude is a sum of delta functions, 〈ρρ ′〉 normally contains a delta
function at t = t ′, corresponding to the strong autocorrelation. It is customary to subtract this
term, to regularize the correlation function at t = t ′. Thus, the two-point correlation function
is defined (e.g. in [20]) as

R(t, t ′) =
〈∑

i =j

δ(t − ti)δ(t
′ − tj )

〉
= 〈ρ(t)ρ(t ′)〉 − δ(t − t ′)〈ρ(t)〉.

1 An example of a random field which is not isotropic is the non-monochromatic random wave models used in [6],
which have a finite average wavenumber vector (carrier wave).
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Using the same approach as above, we write

〈ρρ ′〉 =
〈

1

4π4

∫
dξ dη dξ ′ dη′

η2η′2 eiξf (1 − eiηḟ ) eiξ ′f ′
(1 − eiη′ḟ ′

)

〉
. (15)

To make use of (13), we write down the covariance matrix of the four variables
(f, f ′, ḟ , ḟ ′) appearing in this expression (see definitions in (9)):

M =


c0 C0 0 C1

C0 c0 C̃1 0
0 C̃1 c2 C2

C1 0 C2 c2

 ≡
(

A C

CT B

)
(16)

(A,B,C stand for the 2 × 2 submatrices).
Applying (13) to (15) we get more complicated integrals, which are nevertheless solvable

(derivation in appendix A). The resulting expression for R(t, t ′) is

R(t, t ′) = 1

π2

a

|A|3/2
(
√

1 − ĉ2 + ĉ arcsin(ĉ)),

where a = c2|A| − c0|C|, ĉ = (C2|A| − C0|C|)/a, |A| = c0
2 − C0

2 and |C| = −C1C̃1 (here
|A| and |C| stand for determinants—not absolute value).

From this, the normalized correlation coefficient R ≡ R/〈ρ〉2 − 1, from which we will
derive the other two-point statistics, follows immediately:

R(t, t ′) = c0

c2

a

|A|3/2
(
√

1 − ĉ2 + ĉ arcsin(ĉ)) − 1. (17)

3. Simple curves in monochromatic random fields

The monochromatic Gaussian field (2) is often used as a statistical model for eigenfunctions of
chaotic billiards. In this context, the ‘semiclassical’ regime (large k) has special significance.
In terms of our statistical system, this means that we would be particularly interested in the
k � κ limit (where κ is the curvature of the reference curve). In this regime, the first
approximation for the curve is a straight line, and the second one is a circular arc. These two
cases are also important for their simplicity—in both cases, the domain distance d between
two points on the curve depends only on the curve distance |t − t ′|, so (11) assumes a simpler
form.

For the straight line, ṙ = d̂ is constant and d = |t − t ′|. We get

C0 = G(d), C1 = −G′(d), C2 = −G′′(d). (18a)

For a circle of radius r, define α ≡ (t − t ′)/(2r), so d = 2r sin α, and by simple
geometrical identities, we get

C0 = G(d), C1 = − cos αG′(d),

C2 = sin2 α
G′(d)

d
− cos2 αG′′(d).

(18b)
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3.1. Normalized correlation for the line and the circle

Substituting (4) in (18a) and (18b), we get the amplitude correlations. The results for the
circle are (the straight line is given by their α → 0 limit)

C0 = J0(kd)

C1 = k cos(α)J1(kd)

C2 = k2

(
J0(kd) cos2(α) − J1(kd)

kd

)
.

(19)

For the density, we substitute c2 = C2(0) = 1
2k2 in (14) getting 〈ρ〉 = k/(

√
2π). We use

this to select a curve parameter which measures length in units of average spacing (so we can
expect meaningful results at the 〈ρ〉 → ∞ limit)

s ≡ (t ′ − t)〈ρ〉 = (t − t ′)k/(
√

2π).

In the new units, α = s
√

2π/(2kr) and the argument of the Bessel functions is

θ ≡ kd = 2kr sin

(√
2πs

2kr

)
−−−→
kr→∞

√
2πs.

For the NI normalized correlation, we substitute (19) in (17), getting

ĉ = [J0(θ) cos2 α − J1(θ)/θ ][1 − J0(θ)2] − J0(θ)J1
2(θ) cos2 α

[1 − J0
2(θ)]/2 − J1

2(θ) cos2 α

R = 1 − J0
2(θ) − 2J1

2(θ) cos2 α

[1 − J0
2(θ)]

3/2 (
√

1 − ĉ2 + ĉ arcsin ĉ) − 1.

(20)

To get the universal distribution (k-independent, high-density limit), we take k → ∞
keeping s constant:

ĉ = [J0(θ) − J1(θ)/θ ][1 − J0(θ)2] − J0(θ)J1
2(θ)[

1 − J0
2(θ)

]/
2 − J1

2(θ)

R = 1 − J0
2(θ) − 2J1

2(θ)[
1 − J0

2(θ)
]3/2 (

√
1 − ĉ2 + ĉ arcsin ĉ) − 1.

(21)

Note that in the case of the straight line (κ ≡ 1/r → 0), we have θ = √
2πs and α = 0

exactly, so there is no k dependence, and the universal function (21) is exact for any k (this is
expected, because with no boundary and no curvature, the system has no natural scale).

To further study the universal correlation function (21), we derive its asymptotic
expansion. The first few terms in the expansion of R(s) near s = 0 are

−1 +
π2

16
s +

37π4

2304
s3 +

π4

1296
√

2
s4. (22)

This rises linearly from −1, with a smaller slope than the GOE ensemble (other RMT ensembles
are not linear at this limit); however, as is shown in figure 3, it rises quicker to positive values,
resulting in a smaller range of high repulsion.

For large values of s, we find decaying terms, oscillating in frequencies which are multiples
of the dominant frequency ω ≡ 2π

√
2. The asymptotic expansion has the form

R(s) ∼ Re
3∑

n=1

1

(πωs)n

n∑
m=0

qn,m(iπ) eim(ωs−π/2) + O(s−4), (23)
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Figure 3. Normalized correlation: NI of RW versus RMT level spacings.

where qn,m(x) are the following polynomials:

q1,0 = 1, q1,1 = 9

q2,0 = 25
4 , q2,1 = 49

3 + 39
2 x, q2,2 = 121

12

q3,0 = 169
4 + 17

2 x2, q3,1 = 1369
24 + 511

6 x + 205
8 x2,

q3,2 = 1681
60 + 55

12x, q3,3 = 529
40 .

Writing the leading terms explicitly, we have

R ∼ 1

πωs
(1 + 9 sin(ωs)) . (24)

This s−1 decay is slower than the decay of random matrix ensembles (s−2 for GOE and
GUE, and s−1 × [oscillating part] for GSE). The slow decay has a considerable effect on all
statistics that probe large distances, as will be shown in section 3.2.

When we look at intersections on a full circle, s goes over all values from −kr/
√

2 to
kr/

√
2. This range contains values large enough to make (21) unsuitable for approximating

the correlations. The leading terms in the asymptotic expansion of (20) (the equivalent
of (24)) are found to be

R(s) = 1

π�ss
(As + Bs sin(�ss)) + O(s−2), (25)

where

As = cos2

(
2πs√

2kr

)
, Bs =

[
2 + cos

(
2πs√

2kr

)]2

, �s = sinc

(
s√
2kr

)
· ω

(with normalized sinc(x) ≡ sin(πx)/(πx)), are slowly varying functions, starting from
A0 = 1, B0 = 9 and �0 = ω (as expected from (24), which holds for s � kr), and
ending in A±S = 1, B±S = 1 and �±S = 4

√
2 for S = kr/

√
2. The functions As, Bs and

�s are illustrated in figure 4. As we increase k, the rate of change becomes slower, but
the normalized length of the curve increases, and the value of the coefficients for maximally
separated points (|s| = kr/

√
2) remains the same.
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Figure 4. Asymptotic coefficients and frequency for RW NI on half a circle as a function of
x = √

2s/(kr).

Before proceeding to compute other statistics, we would like to point out that the
oscillations in p(s) (see section 2.1) have a frequency which is numerically consistent with
half the dominant frequency ω ≡ 2π

√
2.

3.2. Number variance and form factor

The variance of the number of intersections in a finite segment of length L is often used
as a measure for the ‘rigidity’ of the distribution (a completely rigid set of points will have
zero variance). The correlation form factor (power spectrum [17]) measures periodicity in
the distribution (which is also manifested by oscillations in the correlation function). These
statistics are given by integral transforms of R which are hard to solve directly. Instead, the
asymptotic expansions of the correlation function can be used to expand them in series at
regions of interest, as explained in appendix C.

The variance for the number of intersections on a finite segment of length L can be
calculated from the normalized correlation by [20]

�2(L) = L + 2
∫ L

0
(L − s)R(s) ds. (26)

We can use (22) and (23) to find the asymptotic behaviour of this statistics. For small L, we
find

�2 ∼ L − L2 +
π2

48
L3 +

37π4

23040
L5 +

π4

19440
√

2
L6

The first two terms follow from the formal definition of �2, and therefore coincide with the
corresponding terms in the RMT ensembles. The third term corresponds to the probability of
finding two intersections in the small interval [0, L]. It is of order L3, as in GOE (again with
a smaller factor).

For large L, we find

�2 ∼ 2q1,0

(πω)
(L ln L − L) + L

(
1 + 2M0

RW

) − 2q2,0

(πω)2 (ln L + 1) − 2M1
RW

+
1

(πω)3L
Re[q3,0(iπ) + 2iπ2q1,1 eiωL] + O(L−2), (27)
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Figure 5. Number variance in segments of length L. For large L, the NRW curve is linear, hence
parallel to the Poisson curve. The RW curve rises faster (the crossing point is at L ∼ 32 × 103,
beyond the range of this plot).

where M0
RW and M1

RW are fixed constants, given by

M0
RW =

∫ 1

0
R(s) ds +

∫ ∞

1

[
R(s) − 1

πωs

]
ds ∼ −0.336

M1
RW = 1

πω

(
9

cos ω

ω
− 1

)
+

∫ 1

0
sR(s) ds

+
∫ ∞

1

[
sR(s) − 1

πω
(1 + 9 sin ωs) − 25

4(πω)2s

]
ds ∼ −0.0826

Writing down the first terms of (27) explicitly, we have

�2(L) ∼ 2

πω
L ln L +

(
1 − 2

πω
+ 2M0

RW

)
L − 25

(2πω)2 ln L − 2

(
M1

RW +
25

(2πω)2

)
. (28)

Note that this variance is asymptotically larger than that of the random (Poisson) distribution
(where �2 ∼ L). However, due to the numerical constants, the L ln L term dominates only
when L > exp

(
πω

(
M0

RW + 1/2
) − 1

) ∼ 36, and only at L ∼ 32 × 103 does it become
larger than the Poisson variance. At segments whose length is a few average spacings, the
variance already becomes significantly larger than the ‘rigid’ RMT ensembles. In figure 5, the
variances of several distributions are compared.

It should be noted that in the case of independent-site percolation (for grids with bounded,
convex cells), a straight line passes only once through each cell. Hence the sign changes
along the line form a Poisson process, with linear number variance. The fact that the
asymptotic behaviour of the random wave model behaves differently is of interest, because
the predictions of the percolation model [5] matched the numerical data for other parameters
which characterize the behaviour of RW nodal lines in the high energy limit, namely, the nodal
count (number of nodal domains contained inside a given area) [4] and the SLE driving force
[19].
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Figure 6. Form factor for RW Nodal intersections. The logarithmic divergence to +∞ at τ = 0 is
too steep to be observable in this scale.

The form factor (scaled power spectrum) for the intersections is the Fourier transform of
the scaled correlation function (up to the subtraction of a δ(τ ) term),

K(τ) =
∫

�

ei2πτs 〈ρ(x)ρ(x + s)〉
〈ρ〉2 ds − δ(τ )

= 1 +
∫

�

ei2πτsR(s) ds. (29)

In figure 6, this is plotted and compared to the corresponding RMT values.
By (24) it is clear that K diverges for τ = 0 (since 1/(πωs) is non-integrable).

Similarly, from the form of equation (23), we expect singularities at integer multiples of
√

2
(corresponding to the angular frequency ω = 2π

√
2). To quantify this, we use the asymptotic

expansion of R to expand K(τ) in small regions around the singular points τ = √
2n + δ for

δ � 1.
For the divergence at 0 (τ � 1), we get

K(τ) ∼ 1 + 2M0
RW − 2[γ + ln(2π)]

πω
− 2

πω
ln τ

This is a logarithmic divergence. It drops down to 1 at τ0 ∼ 8 × 10−6 (which is too small to
be observable in figure 6). The parameter K(0) = 1 +

∫
�
R(s) ds can be viewed as a measure

of asymptotic spectral rigidity [23]. In our case, we see that we have ‘infinite softness’—the
slow decay of the correlations outweighs the short distance repulsion.

One notable feature of figure 6 is the finite jump at τ = √
2. Expanding for this region,

we find

K(
√

2 + δ) ∼ A + Bδ − 9

2ω
Sign[δ] − 39

16π
|δ| +

49

12π3
δ ln |δ|,

where A ∼ 1.25 and B ∼ 1.53 are numerical constants.
For the case where the reference line is a circle (inset of figure 6), we observe strong

oscillations in the form factor for τ <
√

2. These oscillations are caused by the ‘drifting’ of
the frequency �s in (25). Their frequency increases for large values of k, and we would expect
them to cancel out when averaged over a wide enough window of frequencies.
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4. The normal derivative of a Gaussian field

When dealing with solutions of boundary value problems (e.g. two-dimensional quantum
billiards), the boundary of the domain is a curve that plays a special role. It is therefore
worthwhile investigating its intersections with the nodal lines. For a Dirichlet boundary
condition, the boundary is a part of the nodal set, and the derivative of the eigenfunction in
the tangent direction is zero. At the points where another nodal line intersects the boundary,
the derivative in the direction of the other line will also vanish. Since nodal lines of solutions
of the Helmholtz equation intersect at right angles, the intersections we wish to explore are
also zeros of the normal derivative of the field with respect to the curve. This fact makes the
normal derivative of other fields, such as the unbound random wave, natural candidates for
comparison with the statistics of such intersections.

If fact, the normal derivative of a Gaussian random wave field is directly related to the
‘boundary modified’ field mentioned in section 1. The boundary modified random waves
[11], with a correlation function approaching (5), might be realized by symmetrization of
the unbound random wave field (2): ψBRW(x, y) ≡ ψ(x, y) − ψ(x,−y) (where ψ = ψRW

of (4)). In this case, the correlations on the boundary itself can be defined as the limit of
correlations on a line parallel to the x axis at y → 0+. To get a meaningful limit we must
introduce a y-dependent scaling, to keep 〈ψBRW

2〉 constant as we approach y = 0. Denoting
φy(x) ≡ ψBRW(x, y), the average square amplitude for a line at height y is

〈φy(x)2〉 = 〈(ψ(x, y) − ψ(x,−y))2〉 = 2 (c0 − C0(2y))

The correlation function C0 is symmetric, so in the generic case (and, in our case specifically),
its value for small d can be approximated by a square function C0(d) ∼ c0 + 1

2c′′
0d

2. Thus,
〈φy(x)2〉 ∼ (2y)2|c′′

0| (note that c′′
0 is negative), and the scaled field will be

φ̂y(x) = ψ(x, y) − ψ(x,−y)√
〈φy(x)2〉

∼ 1√|c′′
0|

ψ(x, y) − ψ(x,−y)

2y
−−−→
y→0+

1√|c′′
0|

∂ψ(x, y)

∂y
.

Therefore, the properly scaled boundary modified field is proportional to the normal derivative
of the random wave field used to generate it.

4.1. Amplitude correlations of the normal derivative on the reference curve

The normal derivative of the field across the curve is given by g(t) = n(t) · �ψ(r(t)), where
n(t) is the unit normal vector of the curve at point t. Repeating the computation described in
section 2.3, we can calculate its correlation functions:

〈g(t)g(t ′)〉 =
∑
i,j

ni

∂2〈ψ(r(t))ψ(r(t ′))〉
∂ri∂r ′

j

n′
j

=
∑
i,j

−ni

[(
G′′(d) − G′(d)

d

)
didj

d2
+

G′(d)

d
δij

]
n′

j . (30)

For the circle (as before α = (t − t ′)/(2r), d = 2r sin α), we have the identities
n · n′ = cos(2α) and n′ · d̂ = −n · d̂ = sin α. Inserting these in (30) we get

C0 = 〈gg′〉 = − cos2 α
G′(d)

d
+ sin2 αG′′(d). (31a)
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The other two correlation functions are calculated in a similar manner (for a general curve)
in appendix B. For the case where the curve is a circle, they assume the following form2:

C1 = 〈gġ′〉 = cos α
(
1 − 3 sin2 α

) (
G′′

d
− G′

d2

)
− sin2 α cos α

(
G(3) + 4

G′

d2

)
(31b)

C2 = 〈ġġ′〉 = −2

(
cos(2α) +

7

8
sin2(2α)

)
1

d2

(
G′′ − G′

d

)
+

(
1 − 3

2
sin2(2α)

)
G(3)

d

− sin2 α

(
cos2 αG(4) + 4 cos(2α)

G′

d3

)
. (31c)

The correlations for the straight line are easily derived from equations (31a)–(31c) by
taking the limit α → 0:

C0 = −G′

d
(32a)

C1 = G′′

d
− G′

d2
(32b)

C2 = G(3)

d
− 2

d2

(
G′′ − G′

d

)
. (32c)

To study the normally derived field corresponding to the monochromatic random ensemble
of section 3, we apply the results above to the specific correlation function, and discuss the
resulting statistics. For simplicity, we discuss the case of a straight line first, and follow with
comments about the main differences in the case of a circular curve.

For the straight line, the amplitude correlations are derived from (32a)–(32c). To get a
standard scaling with c0 = 1, we first multiply the field by

√
2/k, getting G = 2J0(kd)/k2,

and the following correlations for the normal derivative:

C0 = 2J1(kd)

kd

C1 = k
2J2(kd)

kd

C2 = k2 2

kd

(
J2(kd)

kd
− J3(kd)

)
.

(33)

4.2. Nodal intersection statistics for a straight line

We proceed as in section 3. First, the density of intersection is calculated using (14):

〈ρ〉 = 1

π

√
c2

c0
= k

2π
.

We use this to rescale the distance to units of average spacing s = (t − t ′)k/(2π), so the
argument of the Bessel functions in (33) becomes θ = 2πs. Substituting these results in (17),
we get

ĉ = 8

θ2

(J2 − θJ3)
(
θ2 − 4J1

2
) − 4θJ1J2

2

θ2 − 4J1
2 − 16J2

2

R = θ
(
θ2 − 4J1

2 − 16J2
2
)(

θ2 − 4J1
2
)3/2 (

√
1 − ĉ2 − ĉ arcsin ĉ) − 1.

(34)

2 This form was chosen to make the α → 0 limit more evident. The forms in appendix B are more suitable for
calculations involving Bessel functions or generic derivatives.
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Figure 7. Normalized correlation: NI of normally derived RW.

The asymptotic expansion of R for small s is

R(s) ∼ −1 +
π2

8
s +

13π4

576
s3 +

π4

324
s4.

As before, this grows linearly from −1. The slope is larger than that of the unmodified RW,
but smaller than the slope of the GOE correlations. As shown in figure 7, it rises quickly to
positive values.

The expansion for large s is

R(s) ∼ 2

π(2πs)3 (9 − 25 sin(4πs)) +
−555

2π(2πs)4 cos(4πs)

+
1

2π(2πs)5

(
−69

2
+

12789

8
sin(4πs)

)
. (35)

R(s) decays as s−3, which is faster than the decay of the correlations for the corresponding
RMT ensembles. As in (23), each asymptotic term has oscillating parts, with frequencies
which are multiples of the dominant frequency ωNRW = 4π . As in section 3.1, we find that
the oscillations in the nearest neighbour density of the NRW, described in section 2.1, have a
frequency which is numerically consistent with half the dominant frequency ω ≡ 4π .

With the s−3 decay of the correlations, both
∫
R(s) ds and

∫
sR(s) ds are finite, so

from (26) it is evident that �2 should increase linearly for large values of L. The asymptotic
expansion calculated from (35) is

�2 ∼ (
1 + 2M0

NRW

)
L − 2M1

NRW, (36)

with

M0
NRW =

∫ ∞

0
R(s) ds ∼ −0.2582

and

M1
NRW =

∫ ∞

0
sR(s) ds ∼ −0.00617.
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Figure 8. Form factor for the NI of normally derived RW.

As seen in figure 5, the asymptotic variance is larger than RMT ensembles, but smaller than
Poisson.

Much in the same way, from (29), it is evident that the form factor (figure 8) will
now be finite at τ = 0, and will be continuously differentiable for τ > 0. Irregularities
appear in second and higher derivatives at multiples of the dominant frequency ωNRW (i.e.
τn = nωNRW/(2π) = 2n). The asymptotic expansion for τ � 1 is given by

K(τ) ∼ (
1 + 2M0

NRW

)
+

9

π2
τ 2 ln τ + τ 2

[
9

π2

(
γ − 3

2
+ ln 2π

)
− (2π)2M2

NRW

]
with

M2
NRW =

∫ 1

0
s2R(s) ds +

∫ ∞

1
s2

(
R(s) − 9

4π4s3

)
ds ∼ 0.00579.

We now have a finite K(0) ∼ 0.4836. This value is smaller than the K = 1 of the Poisson
distribution, but larger (softer) than the RMT ensembles, for which K(0) = 0.

4.3. Statistics on a circular arc

The case where the reference curve is a circle can be treated similarly. The amplitude
correlations of the monochromatic waves (corrected form for (33)) can be calculated directly
from (B.5). It should be noted that the amplitude variance c0 = C0(0) remains 1

2k2 (as for the
straight line). However, for any finite k, the variance of the derivative (c2) is different than the
value obtained for the straight line, and induces a larger density of intersections.

The corrected density of intersections for the circle is

ρ ≡ k̃

2π
=

√
k2 + (2κ)2

2π
∼ k

2π

[
1 + 2

(κ

k

)2
]

.
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The O(κ2) increase in density, which is due to curvature, affects the choice of the scaled curve
parameter s = ρ · (t − t ′) and thus all the correlation formulae. It is convenient to express the
resulting statistics in terms of the dimensionless parameter

β = k

k̃
= kr√

(kr)2 + 4
,

which goes to 1 when kr → ∞. With this, the small s expansion of the normalized correlation
is

R ∼ −1 +
π2

8
β2(11 − 10β2)s +

π4

576
β2(−24 + 357β2 − 820β4 + 500β6)s3.

For large values of s (the circle is finite, and |s| can only get values up to 1
2 k̃r =

(1 − β2)
−1/2

), the constant dominant frequency ω = 4π of (36) is replaced with a drifting
frequency (changing very slowly with s)

�s = 4πβ sinc

(
s

k̃r

)
,

similar to the situation in section 3.1. However, in the case of the normally derived field,
there is another notable difference between the circular and the straight curve. Namely, for
any finite value of kr , we get O(s−1) and O(s−2) terms, which do not appear in the case of a
straight line. The leading term of the normalized correlation for s � 1 is

4 sin4 α[(4β2 cos2 α − 1)
2 − (4β2 cos2 α + 1)

2
sin(�ss)] · 1

π�ss
,

where α = πs/(k̃r) is slowly varying up to π/2. When we are in the 1 � s � k̃r region, α is
very small, and this term is O(α4). Hence, it vanishes in the straight line limit. The O(s−2) term,
contains the frequencies 0,�s and 2�s . In the low α region, it is O(α2 cos(�ss)(π�ss)

−2)

(again, vanishes for the straight line). The O(s−3) term is the first one that does not vanish
when α → 0.

The effect of these terms is manifested by the number variance statistic. In figure 9,
the number variance is plotted for three values of kr . As long as L � k̃r , the variance
stays close to the values corresponding to a straight curve given by (36). However, when the
angle covered by the segment becomes non-negligible, O(α4s−1) and O(α2s−2) terms of the
correlation become important, and the variance increases above the linear asymptote.

5. Comparison with other fields

The statistics considered above can be evaluated numerically for the nodal intersections of any
scalar field with a given reference curve. If a random Gaussian model is given for the field, the
techniques demonstrated above can be used to extract the theoretical functions predicted by
the model, and those could be compared to the numerical results. This gives a useful tool for
verifying statistical models for such systems. For the case of chaotic billiards, the numerical
results can be compared to the predictions of random wave models. Also, we can use these
statistics to compare other random wave models with the monochromatic random waves. In
[14], the field with correlation (7) was compared to the random waves model with respect to
special statistics proposed there (which were related to the probability of finding a nodal line
inside a reference tube). The nodal intersection statistics provide another way to compare
these models.
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Figure 9. Number variance for zeros of NRW on a circular curve, for three different values of kr .
The length of the segment is bound by the total length of the circle, marked by circular dots on the
plot.

5.1. The Gaussian short-range field

The short-range field (7) was chosen so that its short distance behaviour will be the same as that
of the monochromatic random wave field, so we expect the average level spacing to be

√
2π/k.

Substituting the correlation function (7) in (18b), and denoting G = exp(−θ2/4), θ = kd, we
get

C0 = G, C1 = 1
2kθ cos(α)G,

C2 = 1
2k2

[
cos(2α) − 1

2θ2 cos2(α)
]
G

(so c2 = k2/2 as expected, and θ → √
2πs as before). The nodal intersections correlation for

the straight line becomes

ĉ = e− 1
4 θ2 1 − e− 1

2 θ2 − 1
2θ2

1 − e− 1
2 θ2 − 1

2θ2 e− 1
2 θ2

R(s) = 1 − e− 1
2 θ2 − 1

2θ2 e− 1
2 θ2

(1 − e− 1
2 θ2

)
3
2

(
√

1 − ĉ2 + ĉ arcsin(ĉ)) − 1.

(37)

The expansion for small s is

R ∼ −1 +
π2

4
s − π4

48
s3 +

√
3π4

54
s4 + O(s5),

and for large s, it is

R ∼ e−(πs)2[ 1
2 (πs)4 − 2(πs)2 + 1

]
+ O(e−2(πs)2

s8).

As can be seen in figure 10(a), the slope at 0 is higher than that of the GOE, and the
correlations decay to 0 faster than all other distributions considered here. Thus, this field has
smaller repulsion and it may be considered the closest to the random Poisson distribution.
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(a) Correlations (b) Form Factor

Figure 10. SRF nodal intersections compared to other fields.

The number variance and form factor also reflect this property. Denoting

M0
SRF =

∫ ∞

0
R(s) ds ∼ −0.2141

M1
SRF =

∫ ∞

0
sR(s) ds ∼ −0.029 02

M2
SRF =

∫ ∞

0
s2R(s) ds ∼ −0.004 34,

we find that the asymptotic number variance is linear with coefficient (1 + 2M0
SRF) ∼ 0.5718,

which is larger than the normally derived random waves (thus closer to Poisson).
The form factor has a smooth form (because (37) is not oscillatory). The expansion for

small τ is

K(τ) ∼ (
1 + 2M0

SRF

) − 4π2M2
SRFτ

2.

We get a relatively large K(0) ∼ 0.5718, and a quick approach to the limiting value of 1
(which is consistent with the notion that this is closer to the Poisson distribution).

5.2. Chaotic billiards

Eigenfunctions of chaotic billiards provide an ensemble of functions with complex behaviour.
In the semiclassical limit, they are well modelled by Gaussian random wave ensembles (the
monochromatic random wave ensemble is used to model the eigenfunctions in regions which
are far enough from the boundary, and various boundary modified ensembles model the field
close to the boundary).

The statistics considered in this paper were evaluated numerically for eigenfunctions of
desymmetrized Bunimovich stadium (0.5 × 1 rectangle joined with a quarter of a circle of
radius 1) and desymmetrized Sinai billiard (1.2×1 rectangle, with a quarter of a circle of radius
0.5 cut out of one of the corners)—both with Dirichlet boundary conditions. For the Stadium,
1500 eigenfunctions were taken, with wave numbers ranging from k = 110 to k = 165. For
the Sinai billiard, we used 10 000 wavefunctions, with wave numbers from 350 to 500.

Fixed reference curves were chosen in the interior of the billiards, as shown in
figure 11. For each wavefunction, the sequence of intersections of the nodal lines with these
curves was calculated, and normalized to unit average spacing according to the corresponding
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(a) Stadium billiard

Line 2

L
ine 1

(b) Sinai billiard

Figure 11. Internal reference curves in the quantum billiards.

(a) N N spacing (b) Form factor

Figure 12. Billiards: NI with internal line.

wavenumber. As shown in figure 12, the nearest neighbour distribution agrees very well with
the predictions of the random waves model. The form factor is also very close to the expected
curve.

The number variance of nodal intersections on segments of the reference curves is plotted
in figure 13. For short segments, the results are close to the predictions of the random waves
model, but deviate considerably from this model as we move to segments of large normalized
length, especially in the case of the Sinai billiard. This deviation happens when the (unscaled)
length of the segment is comparable to the billiard dimensions. On such scales, it seems likely
that the geometrical details of the billiard would have an effect on the statistical properties of
the wavefunctions.

6. Summary

The analytic results obtained for the three Gaussian fields discussed in this paper are
summarized in table 1, and compared to their analogues in the well-known random matrix
and Poisson ensembles. For short distances, the normalized correlation function for all the
distributions considered (except of the Poisson distribution) approaches −1, so the leading
term of 1 + R(s) is listed, for s = ε � 1. Similarly, the number variance for short
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Figure 13. Number variance of NI with segments inside chaotic billiards.

intervals is asymptotically L − L2 (again, except of the Poisson case), so the leading term
of R̂2 = �2(L) − L + L2 = E[n(n − 1)] is listed. (For L = ε � 1, this is also twice the
probability of finding two points in the interval). For large distances, we list the leading terms
of �2 and R. For the form factor, we list the ‘asymptotic rigidity’ K(0) (which is directly
related to �2 and �̄ in large intervals [20, 23]), the singular frequencies where K(τ) or its
derivatives diverge and the type of divergence (number of the first diverging derivative) in the
first nonzero singular frequency.

We have seen that

• Nodal intersections (NI) with a reference curve can be used as a statistical means to
obtain insight into the properties of complex networks of lines. The NI statistics of
the random wave (RW) model display characteristic behaviour, which is quite different
from the statistics of other point processes. Eigenfunctions of chaotic billiards match
these statistics well, with some differences on scales comparable to the dimensions of the
billiard.

• For the RW and some other Gaussian models, the two-point correlations and other statistics
related to it can be derived by analytical means.

• The nearest neighbour distribution is harder to obtain (since it depends on n-point
correlations with n � 3). However, numerical evidence suggests that the frequency
of oscillations is related to the dominant frequencies calculated for the corresponding
two-point correlation functions.
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Table 1. Comparison of NI statistics.

Correlation Form factor Number variance

Process 1 + R (ε) R(s � 1) K(0) Divergencesa R̂2(ε) �2(L � 1)

Poisson 1 0 1 — ε2 L

SRF 2.467ε 48.7s4e−(πs)2
0.572 — 0.822ε3 0.572L

NRW 1.234ε 0.023s−3 0.484 (3){2, 4, . . .} 0.411ε3 0.484L

RW 0.617ε 0.036s−1 ∞ (1){√2, 2
√

2, . . .} 0.206ε3 0.072L log L

GOE 1.645ε −0.101s−2 0 (4){1} 0.548ε3 0.203 log L

GUE 3.290ε2 −0.051s−2 0 (2){1} 0.548ε4 0.101 log L

GSE 11.55ε4 0.25s−1 cos(ωs) 0 (0){1, 2} 0.770ε6 0.051 log L

a Nonzero values of τ , for which K(τ) or one of its derivatives diverge. The number in parentheses specifies the
diverging derivative at the first of these points.

Appendix A. Derivation of the zeros correlation from amplitude statistics

In section 2.4, the correlation of the zeros of a Gaussian random function on a curve was
expressed in terms of the Fourier integral (15):

〈ρρ ′〉 =
〈

1

4π4

∫
dξ dη dξ ′ dη′

η2η′2 eiξf (1 − eiηḟ ) eiξ ′f ′
(1 − eiη′ḟ ′

)

〉
.

We note that the integrand contains four terms of the form exp(ivi · f), with

vi ∈ {(ξ, ξ ′, 0, 0), (ξ, ξ ′, η, 0), (ξ, ξ ′, 0, η′), (ξ, ξ ′, η, η′)},
and f = (f, f ′, ḟ , ḟ ′).

If we use (13) to evaluate the statistical average, these terms are replaced by exp
(− 1

2vi
T Mvi

)
,

where M is the covariance matrix of f , given in (16). To continue, we first integrate the ξ and
ξ ′ coordinates. To separate them out, we use a simple block matrix identity.

For any pair of column vectors x, y ∈ R
n and three n×n matrices A,B,C, where A and

B are symmetric and A is non-singular, the following identity can be simply derived:

(xT yT )

(
A C

CT B

) (
x

y

)
= (xT + ỹT )A(x + ỹ) + yT B̃y, (A.1)

where B̃ = B − CT A−1C and ỹ = A−1Cy.
In addition, using the same notation, one can also deduce the determinant identity

det

(
A C

CT B

)
= det A det B̃, (A.2)

which we shall use below.
Applying (A.1) to the four terms, with vi

T = (xT , yi
T ) (i.e. xT = (ξ, ξ ′) and

yi
T ∈ {(0, 0), (η, 0), (0, η′), (η, η′)}), the x-dependent integration for each of the four terms

reduces to the usual Gaussian form∫
dξ dξ ′ e− 1

2 (xT +ỹT
i )A(x+ỹi ) = 2π√

det A
.

This does not depend on y and therefore contributes to a constant multiplicative factor. The
remaining integral assumes the following form:∫ ∫ ∞

−∞

dη dη′

η2η′2
(
1 − e− 1

2 aη2 − e− 1
2 bη′2

+ e− 1
2 y2

T B̃y2
)

(using a, b and c for the matrix elements of B̃).
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This can be rewritten as I1 + I2, where

I1 =
∫ ∫ ∞

−∞

dη dη′

η2η′2
(
1 − e− 1

2 aη2)(
1 − e− 1

2 bη′2) = 2π
√

ab

and

I2 =
∫ ∫ ∞

−∞

dη dη′

η2η′2 e− 1
2 (aη2+bη′2)(e−cηη′ − 1).

I2 is not well defined, but taking the Cauchy principal value for the integrals, anti-
symmetric integrands do not contribute. After symmetrization and change of integration
variables, we get

I2 =
√

ab

∫ ∫ ∞

−∞

dx dy

x2y2
e− 1

2 (x2+y2)[cosh(ĉxy) − 1],

with ĉ ≡ c/
√

ab. One way to solve this integral is to derive the expression by ĉ

twice, and integrate back after the x and y integrations. Another way is to express
f (xy) ≡ (xy)−2[cosh(ĉxy) − 1] as a power series in (xy)2, and integrate term by term
(each term becomes a square of a simple Gaussian moment). Either way, for any |ĉ| < 1, we
get

I2 = 2π
√

ab[−1 +
√

1 − ĉ2 + ĉ arcsin ĉ].

To show that the convergence condition |ĉ| < 1 holds, we note that

|ĉ| < 1 ⇔ det B̃ = ab − c2 > 0.

However, from (A.2) we have det M = det A det B̃. Since both A and M are covariance
matrices, they are positive definite, and their determinant must be positive for any non-
degenerate case. This can only be consistent if det B̃ is positive too.

Inserting I1 and I2 into the expression for the normalized correlation we find (17)

R(t, t ′) = c0

c2

a

(det A)3/2 (
√

1 − ĉ2 + ĉ arcsin(ĉ)) − 1.

Appendix B. Calculating the amplitude correlations for the normal derivative of a
Gaussian field

When the investigated field is translationally invariant and isotropic, the correlation functions
C0, C1 and C2 for the ‘normally derived’ function g(t) = n(t) · �ψ(r(t)) can be calculated
in terms of the curve parameters and reduced correlation function G(d). The derivation is
straightforward but tedious, and follows the same mechanism used in sections 2.3 and 4.1. In
this section we recite the main steps and results.

As in previous sections, we start by using linearity to move the derivatives out of the
statistical average, getting (30) for the first correlation function C0. This expression involves
second-order partial derivatives of the basic correlation 〈ψψ ′〉, so the expressions for C1 and
C2 involve third- and fourth-order partial derivatives correspondingly.

Using shorthand notation where tagged parameters refer to values at t ′, ∂i ≡ ∂/∂ri and
∂ ′

i ≡ ∂/∂r ′
i , we have

C0 =
∑
i,j

nin
′
j ∂i∂

′
jG(|r − r′|)

C1 =
∑
i,j

∂ ′
t nin

′
j ∂i∂

′
jG

C2 =
∑
i,j

∂t ∂
′
t nin

′
j ∂i∂

′
jG.

(B.1)
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The derivatives of n in these expressions can be evaluated using the Frenet formula ∂tn = −κ ṙ
(where κ is the curvature at t), and the partial derivatives of G can be expressed in terms of
derivatives with respect to d (G′,G′′,G(3), G(4)) and the distance vector d.

First, we calculate the partial derivatives of G using the following rules for derivatives of
the distance d ≡ |d| and direction vector d̂ ≡ d/d (where d = r − r′):

∂id = −∂ ′
id = d̂ i ∂i d̂j = −∂ ′

i d̂j = 1

d
(δij − d̂ i d̂j ).

To express the results in a manifestly symmetric way, we define d
[k]
i1,i2,...,iN

, the ‘N-
dimensional symmetric direction tensor of degeneracy k’ as the symmetrized product of k
Kronecker deltas and N − 2k direction vectors d̂. Specifically,

d
[0]
ij = d̂ i d̂j , d

[1]
ij = δij

d
[1]
ijk = δij d̂k + δikd̂j + δjkd̂i

d
[1]
ijkl = δij d̂kd̂ l + δikd̂j d̂ l + δil d̂j d̂k + δjkd̂i d̂ l + δjl d̂ i d̂k + δkl d̂ i d̂j

d
[2]
ijkl = δij δkl + δikδjl + δilδjk.

We also introduce the notation G[n] for the specific combinations of derivatives of G up
to order n, which satisfy the following recurrence relations3:

G[0](d) = G(d)

G[n+1](d) = G[n]′(d) − n

d
G[n](d).

Specifically, we have

G[1] = G′

G[2] = G′′ − 1

d
G′

G[3] = G(3) − 3

d
G′′ +

3

d2
G′

G[4] = G(4) − 6

d
G(3) +

15

d2
G′′ − 15

d3
G′.

With these notations, the partial derivatives of G are given by

∂iG = G[1]d
[0]
i

∂i∂jG = G[2]d
[0]
ij +

1

d
G[1]d

[1]
ij

∂i∂j ∂kG = G[3]d
[0]
ijk +

1

d
G[2]d

[1]
ijk

∂i∂j ∂k∂lG = G[4]d
[0]
ijkl +

1

d
G[3]d

[1]
ijkl +

1

d2
G[2]d

[2]
ijkl .

Substituting these in (B.1), we get

C0 =
∑
i,j

−nin
′
j (G

[2]d
[0]
ij +

1

d
G[1]d

[1]
ij )

= −(n · d̂)(n′ · d̂)G[2] − (n · n′)
1

d
G[1], (B.2)

3 These relations are almost identical to the Bessel recurrence relations. Hence, for the case where G(d) = J0(kd),
we get G[n] = (−k)nJn(kd).
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which is equivalent to (30). Similarly,

C1 =
∑
i,j

κ ′ni ṙ
′
j ∂i∂jG +

∑
i,j,k

nin
′
j ṙ

′
k∂i∂j ∂kG

= κ ′
[
(nd̂)(ṙ′d̂)G[2] + (nṙ′)

1

d
G[1]

]
+ (nd̂)(n′d̂)(ṙ′d̂)G[3] +

1

d
[(nn′)(ṙ′d̂) + (nṙ′)(n′d̂)]G[2] (B.3)

and, defining d̃ = κ ′n − κn′, we get

C2 = −κκ ′ṙi ṙ
′
j ∂ijG + d̃i ṙj ṙ

′
k∂ijkG + nin

′
j ṙk ṙ

′
l ∂ijklG

= −κκ ′
[
(ṙd̂)(ṙ′d̂)G[2] + (ṙṙ′)

1

d
G[1]

]
+ (d̃d̂)(ṙd̂)(ṙ′d̂)G[3]

+ [(d̃ṙ)(ṙ′d̂) + (d̃ṙ′)(ṙd̂) + (d̃d̂)(ṙṙ′)]
1

d
G[2]

+ (nd̂)(n′d̂)(ṙd̂)(ṙ′d̂)G[4]

+ [(nd̂)(n′d̂)(ṙṙ′) + (nd̂)(ṙ′d̂)(ṙn′)

+ (n′d̂)(ṙd̂)(nṙ′) + (ṙd̂)(ṙ′d̂)(nn′)]
1

d
G[3]

+ [(nn′)(ṙṙ′) + (nṙ′)(ṙn′)]
1

d2
G[2]. (B.4)

For the case where the curve is a circle, equations (B.2)–(B.4) can be much simplified.
Denoting α = 1

2κ(t − t ′) as in section 3, the following identities hold:

κ = κ ′, d = 2

κ
sin α, d̃ = −2κ sin αd̂

d̂ · ṙ = d̂ · ṙ′ = cos(α), d̂ · n = −d̂ · n′ = − sin(α)

n · n′ = ṙ · ṙ′ = cos(2α), ṙ · n′ = −ṙ′ · n = sin(2α).

Substituting these in (B.2)–(B.4), and expressing the trigonometric coefficients in terms
of c ≡ cos α, the correlations become

C0 = (1 − c2)G[2] + (1 − 2c2)G[1] 1

d

C1 = (c3 − c)G[3] + (6c3 − 5c)G[2] 1

d
+ (4c3 − 4c)G[1] 1

d2

C2 = (c4 − c2)G[4] + (12c4 − 12c2 + 1)G[3] 1

d

+ (28c4 − 32c2 + 5)G[2] 1

d2
+ (8c4 − 12c2 + 4)G[1] 1

d3
,

(B.5)

or, in terms of the actual derivatives G(n):

C0 = (1 − c2)G′′ + (−c2)G′ 1

d

C1 = (c3 − c)G(3) + (3c3 − 2c)G′′ 1

d
+ (c3 − 2c)G′ 1

d2

C2 = (c4 − c2)G(4) + (6c4 − 6c2 + 1)G(3) 1

d
+ (7c4 − 11c2 + 2)G′′ 1

d2
+ (c4 − c2 + 2)G′ 1

d3

which is equivalent to (31a)–(31c).
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Appendix C. Using asymptotic series to expand the integral transforms

In section 3.2 and other sections, we discuss the number variance and form factor of some
distributions. These statistics can be expressed as an integral involving the normalized
correlation ((26) and (29)), for which we have an explicit expression. The expression for
the correlation function (e.g. (21) or (34)) is usually very complicated, which makes the
resulting integral hard to solve directly. However, given the asymptotic expansion of the
normalized correlation, we can calculate the asymptotic expansion of the integral up to a small
number of constants, which can be calculated numerically. The outline of this method is
described here.

When calculating the number variance for large L, we encounter integrals of the form

If (L) =
∫ L

0
f (x) dx, (C.1)

where f (x) = xkR(x), and R(x) is the normalized correlation, for which the asymptotic
expansion is known. We split the asymptotic expansion of f into two parts

f (x) ∼
n0∑

n=1

an(x) +
∞∑

n=n0+1

an(x),

where n0 is the number of terms an such that
∫ ∞
L

an(x)dx diverges for every finite L (n0 may
be 0, but we will assume it is finite. We will also assume that for n > n0 the integrals converge
uniformly with some finite lower bound L0).

Defining

D(x) ≡
n0∑

n=1

an(x), C(x) ≡ f (x) − D(x), (C.2)

we find that C(x) generates an integral with known asymptotic expansion∫ ∞

L

C(x)dx ∼
∞∑

n=n0+1

∫ ∞

L

an(x) dx ≡ −
∞∑

n=n0+1

bn(L). (C.3)

We now wish to add and subtract D from the integrand of (C.1). However, the interval
[0, L] might contain points which would cause the integral of D to diverge. For such cases,
we split the interval at some point x0, which is larger than these problematic points, and do
the subtraction only in the second half [x0, L]. We will assume that x0 and L are both larger
than L0. In practice, for the functions used in this paper, there is either no points of divergence
(and x0 is chosen to be 0), or a single point of divergence at 0, in which case we choose x0 = 1
(which happens to simplify the resulting expression). Using (C.2), the integral becomes

If (L) =
∫ x0

0
f (x) dx +

∫ L

x0

C(x) dx +
∫ L

x0

D(x) dx.

The third term in this expression consists of the ‘diverging’ terms of f ; however, the
integral here is finite and its asymptotic expansion is easily obtained from (C.2)∫ L

x0

D(x) dx ∼
n0∑

n=1

∫ L

x0

an(x) dx ≡
n0∑

n=1

bn(L). (C.4)

To handle the remaining terms, we add and subtract (C.3)

If (L) =
∫ x0

0
f (x) dx +

∫ ∞

x0

C(x) dx +
∫ L

x0

D(x) dx −
∫ ∞

L

C(x) dx.
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In this expression, the first two terms are having finite values independent of L, and the
last two have known asymptotic expansion. Using (C.3) and (C.4), we get the final result:

If (L) ∼ Mf +
∞∑

n=1

bn(L), (C.5)

where

Mf ≡
∫ x0

0
f (x)dx +

∫ ∞

x0

[f (x) − D(x)]dx.
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